
Оценка системы мониторинга за УПП в постсоветских странах. Систематический обзор.

Устойчивость возбудителей инфекций мочевыводящих путей в Казахстане за период 2019 - 2024 г., предварительные результаты

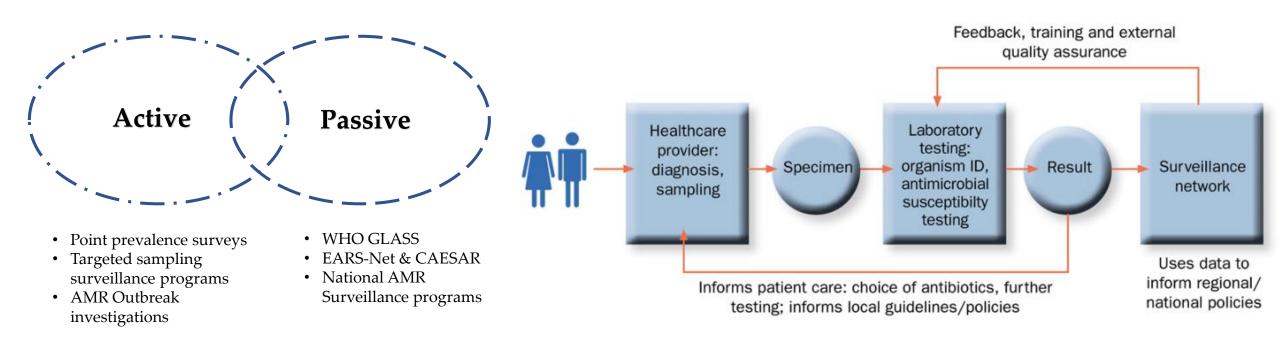
Дарига Жазыхбаева Докторант 3 курса Глобальное Здравоохранение Школа Медицины, Назарбаев Университет

Обзор проблемы устойчивости к противомикробным препаратам (УПП) и её воздействия

- Устойчивость к противомикробным препаратам (УПП): бактерии, вирусы, грибы и паразиты со временем изменяются и перестают реагировать на лекарства, которые раньше их убивали или останавливали
- Она затрагивает все виды противомикробных препаратов: антибиотики, противовирусные, противогрибковые и противопаразитарные средства, делая инфекции труднее поддающимися лечению или вовсе не лечимыми.
- УПП возникает естественным образом, но ускоряется неправильным использованием лекарств: в первую очередь из-за чрезмерного и нерационального применения в медицине, ветеринарии и сельском хозяйстве.
- у УПП нет границ: резистентные микроорганизмы могут распространяться между людьми, животными и окружающей средой, затрагивая все страны, особенно государства с низким и средним уровнем дохода.

Глобальные оценки бремени устойчивости к противомикробным препаратам (УПП/AMR)

Study/Report	Region covered	Estimates/ projections	Associated Deaths	Attributable Deaths
O'Neill Report 2014	Worldwide	2050	-	10 000 000
AMR Collaborators (2022, Murray et al)	Worldwide	2019	4 950 000	1 270 000
Mestrovich et al (2022)	WHO EU	2019	541 000	133 000
GBD 2021 AMR Collaborators (2024)*	Worldwide	2021	4 710 000	1 140 000
GBD 2021 AMR Collaborators (2024)*	Worldwide	2050	8 220 000	1 910 000


^{*}same study

in 2019, 1 in 5 deaths caused by AMR occurred in children under the age of 5

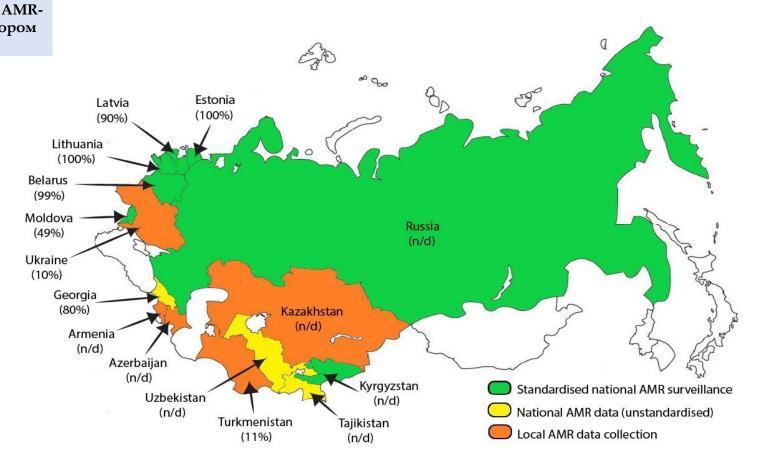
¹³th most common cause of death in 2019

Виды Надзора за УПП

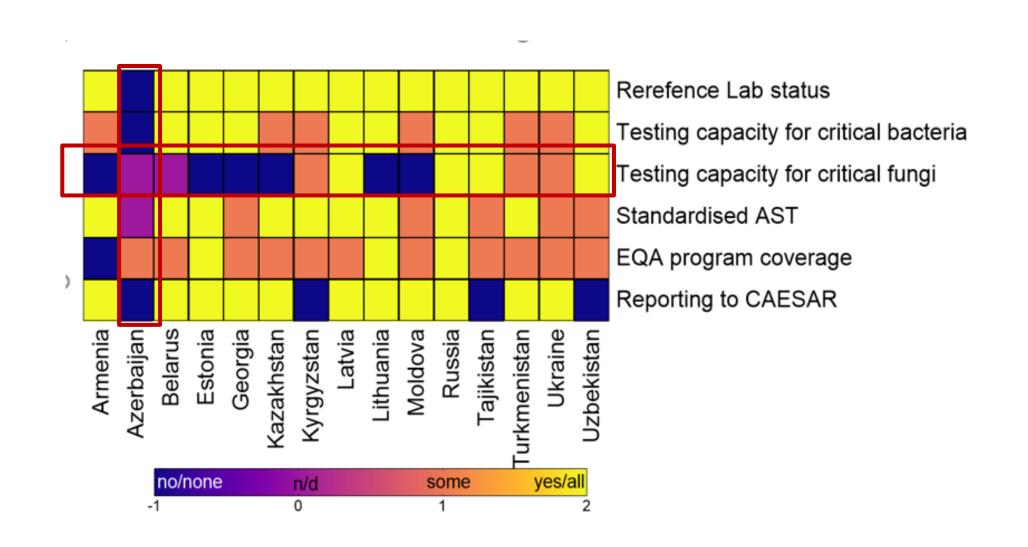
- Надзор за устойчивостью к противомикробным препаратам (УПП/AMR) это процесс сбора, анализа и представления данных по устойчивости к антибиотикам
- Существует активный и пассивный надзор за УПП
- Пассивный надзор основан на рутинных лабораторных данных, его проще поддерживать и он широко применяется

Antimicrobial Resistance Surveillance in Post-Soviet Countries: A Systematic Review

Dariga Zhazykhbayeva 10, Dinagul Bayesheva 2, Zhanar Kosherova 1,*0 and Yuliya Semenova 10


Цели обзора:

- Оценить и охарактеризовать **системы надзора за УПП и Национальные планы действий (NAP)** в бывших советских странах.
- Поддержать основанную на доказательствах политику и способствовать улучшению существующих систем надзора за УПП
- Выявить прогресс и недостатки в реализации NAP и национальных УПП систем в регионе


Методология:

- Исследование зарегистрировано в **PROSPERO (CRD42024537799)** и соответствует рекомендациям PRISMA
- Проведен систематический поиск литературы в пяти базах данных: PubMed, MEDLINE, Embase, CINAHL и CyberLeninka, включая публикации на английском и русском языках с 2001 года по май 2024 года
- В дополнение к академическим публикациям, рассмотрены "серые" источники и официальные документы национальных агентств
- Данные были отобраны двумя независимыми исследователями с последующим обсуждением и привлечением третьего для разрешения разногласий, проведена оценка качества публикаций
- Оценка NAP базировалась на рекомендациях ВОЗ, а оценка надзора за AMR на руководстве CAESAR

Страна	рана Уровень AMR-надзора (по карте)			
Армения	Local AMR data collection	10%		
Азербайджан	Local AMR data collection	n/d		
Беларусь	Standardised national AMR surveillance	99%		
Эстония	Standardised national AMR surveillance	100%	% Bela	
Грузия	National AMR data (unstandardised)	80%	(99	
Казахстан	Local AMR data collection	n/d	Mold (49	
Киргизстан	National AMR data (unstandardised)	n/d	Ukra	
Λ атвия	Standardised national AMR surveillance	90%	(109	
Литва	Standardised national AMR surveillance	100%		
Молдова	National AMR data (unstandardised)	49%		
Россия	Standardised national AMR surveillance	n/d		
Таджикистан	National AMR data (unstandardised)	n/d		
Туркменистан	Local AMR data collection	11%		
Украина	Украина Local AMR data collection			
Узбекистан	Local AMR data collection	n/d		

Описание национальных систем надзора за УПП

- EARS-Net и CAESAR это основные сети эпиднадзора за УПП в Европе и Центральной Азии
- Страны Балтии входят в сеть EARS-Net и передают данные об устойчивости с 2001 года
- Оставшиеся 12 постсоветских государств участвуют в сети CAESAR, но степень их вовлечённости различается
- По данным 2023 года, 8 из 12 (66,7%) постсоветских стран отправляют данные об АМР
- Не передают данные: Азербайджан, Кыргызстан, Таджикистан и Узбекистан

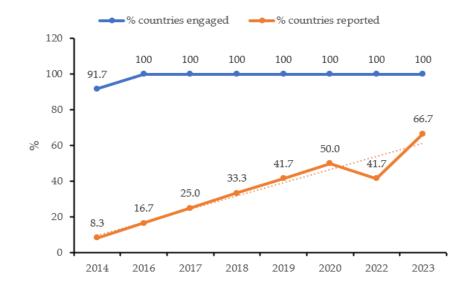


Table S2. Engagement and reporting status of countries in the CAESAR network

Countries	CAESAR 2014 (data for 2012+2013)					CAESAR 2019 (data for 2018)		CAESAR 2020 (data for 2019)		CAESAR +EARS- Net 2022 (data for 2020)		CAESAR +EARS- Net 2023 (data for 2021)				
	engaged	reported	engaged	reported	engaged	reported	engaged	reported	engaged	reported	engaged	reported	engaged	reported	engaged	_
Armenia	+	-	+	-	+	-	+	-	+	+	+	+	+	-	+	+
Azerbaijan	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-
Belarus	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Georgia	+	-	+	-	+	+	+	+	+	+	+	+	+	+	+	+
Kazakhstan	-	-	+	-	+	-	+	-	+	-	+	-	+	-	+	+
Kyrgyzstan	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-
Moldova	+	-	+	-	+	-	+	-	+	-	+	+	+	+	+	+
Russia	+	-	+	+	+	+	+	+	+	+	+	+	+	+	+	+
Tajikistan	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-
Turkmenistan	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	+
Ukraine	+	-	+	-	+	-	+	+	+	+	+	+	+	+	+	+
Uzbekistan	+	-	+	-	+	-	+	-	+	-	+	-	+	-	+	-
overall	11	1	12	2	12	3	12	4	12	5	12	6	12	5	12	8

[&]quot;+" – indicates engagement/submission of AMR data

[&]quot;-" – indicates lack of engagement/submission of AMR data

Устойчивость возбудителей инфекций мочевыводящих путей в Казахстане за период 2019 - 2024 г.

- Инфекции мочевыводящих путей (ИМП) одни из самых распространённых бактериальных инфекций: ежегодно ими болеют более 150 млн человек во всём мире. Лечение ИМП часто начинается эмпирически, что нередко приводит к чрезмерному применению антибиотиков широкого спектра
- ИМП существенно **вносят вклад в бремя УПП** как в стационарах, так и на уровне поликлиник
- Рост устойчивости уропатогенов снижает эффективность терапии, повышает риск осложнений и увеличивает расходы системы здравоохранения
- Поэтому **надёжные данные эпиднадзора** крайне важны они помогают обновлять клинические рекомендации, направлять антимикробный надзор и формировать рациональную политику в области антибиотиков

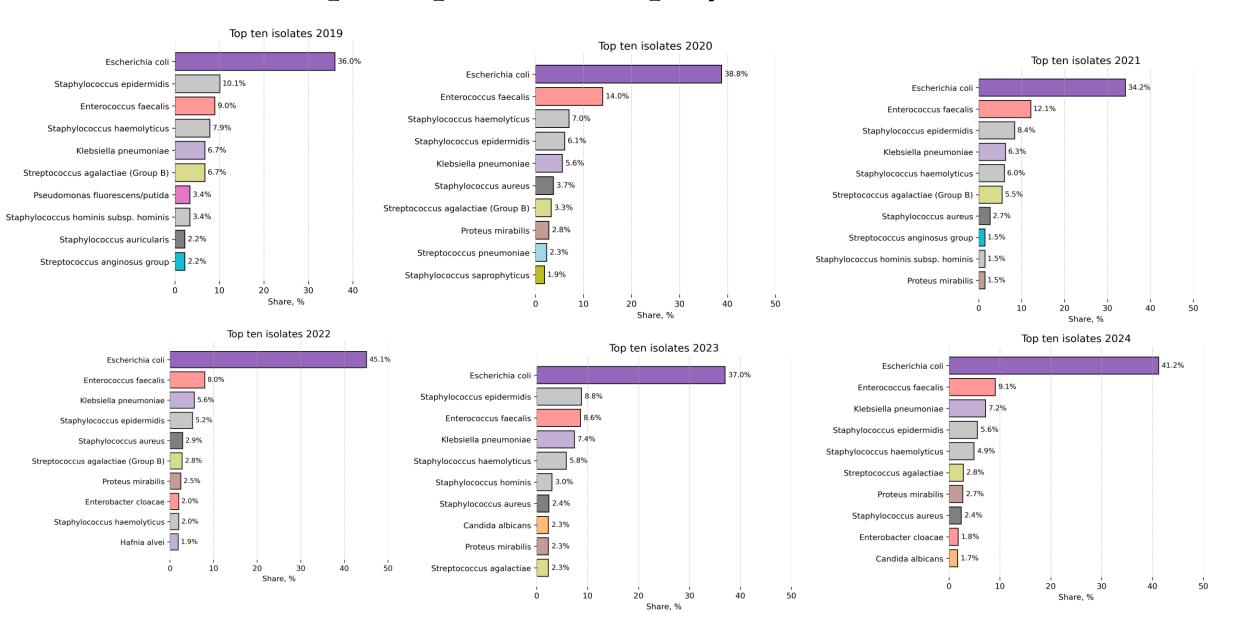
Цели исследования

- 1. Оценить распространённость устойчивости и множественной лекарственной устойчивости среди возбудителей ИМП, выделенных в крупнейших городах Казахстана
- 2. Сравнить профили УПП между городами, выявив региональные различия, динамику во времени и особенности в стационарах городов
- 3. Предоставить доказательные данные для обновления местных клинических рекомендаций и разработки мер общественного здравоохранения, направленных на снижение УПП

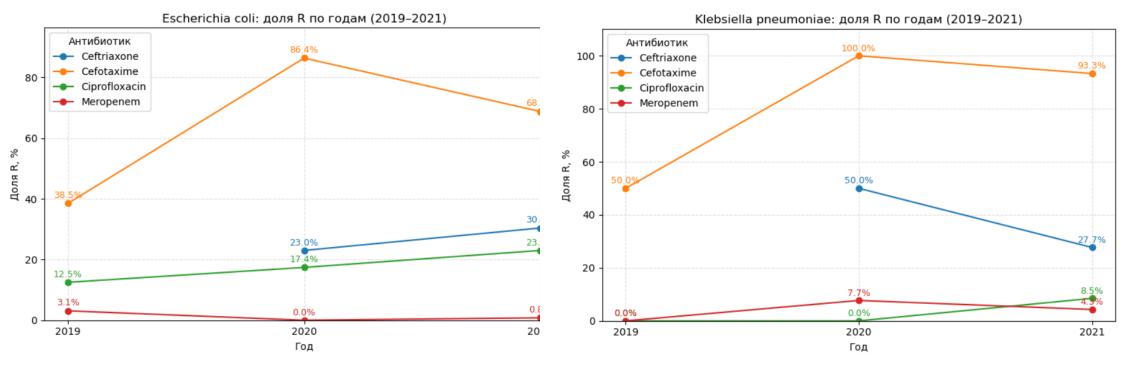
Дизайн исследования и датасет

• Тип исследования: ретроспективное, мультицентровое, основанное на лабораторных данных

Данные: результаты антибиотикограмм (AST)

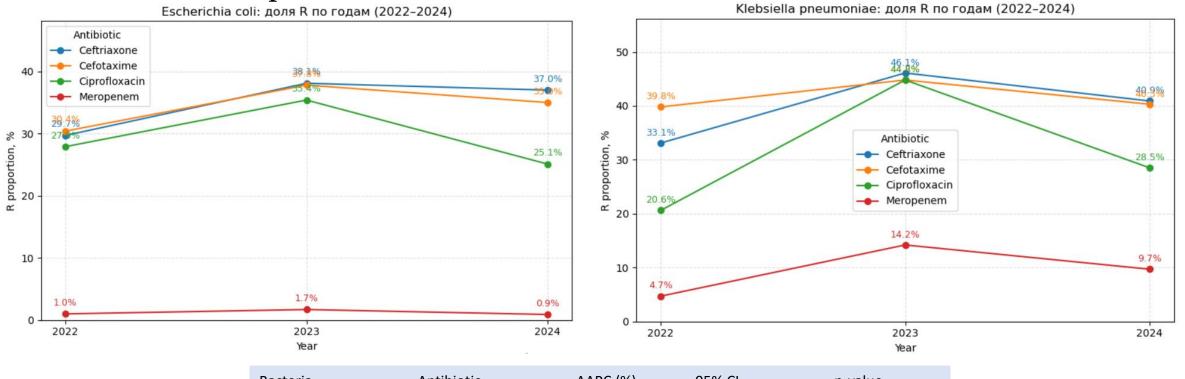

Контекст: данные AST извлечены из сети лабораторий *Olymp*, обслуживающих стационары в

крупных городах Казахстана

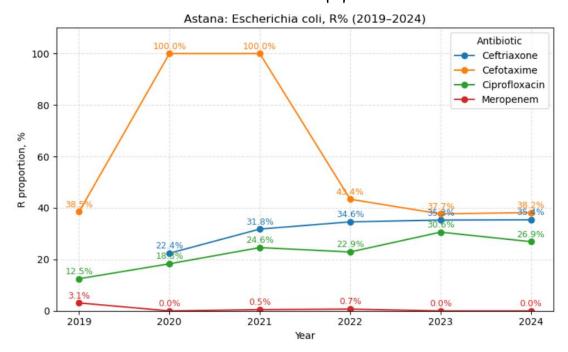

Период: 2019–2024 гг.

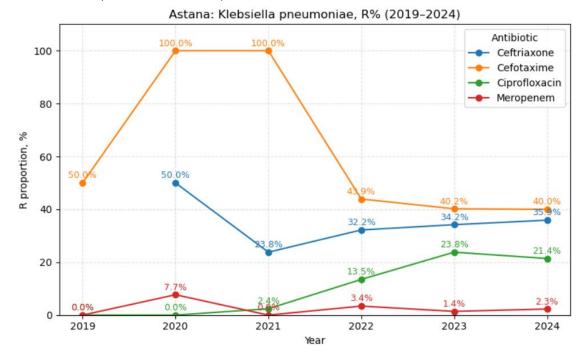
- Сеть клинико-диагностических лабораторий **Olymp** работает с января 2007 года и является одной из крупнейших лабораторных сетей Казахстана
- Лаборатории Olymp аккредитованы по международному стандарту **ISO 15189**.

Предварительные результаты



Данные по УПП с трех городов – Астана, Караганда, Усть-Каменогорск


Bacteria	Antibiotic	AAPC (%)	CI 95%	p-value
E. coli	Cefotaxime	+59.8	+4.8 to +143.5	0.029
E. coli	Ciprofloxacin	+43.0	-7.4 to +120.8	0.106
E. coli	Meropenem	-41.4	-86.6 to +157.0	0.479
K. pneumoniae	Cefotaxime	+228.1	-51.1 to +2099.7	0.221
K. pneumoniae	Ciprofloxacin	+6.99×10 ¹⁰ (!)	-100.0 to inf	0.999
K. pneumoniae	Meropenem	+12.8	-83.0 to +648.6	0.901


Данные по УПП с шести городов – Астана, Караганда, Усть-Каменогорск, Шымкент, Уральск, Костанай

Bacteria	Antibiotic	AAPC (%)	95% CI	p-value
E. coli	Ceftriaxone	+12.9	+7.4 to +18.8	< 0.001
E. coli	Cefotaxime	+8.4	+1.9 to +15.3	0.011
E. coli	Ciprofloxacin	-10.5	−15.6 to −5.1	< 0.001
E. coli	Meropenem	-15.0	-31.8 to +5.8	0.146
K. pneumoniae	Ceftriaxone	+5.4	-7.3 to +19.7	0.423
K. pneumoniae	Cefotaxime	-3.1	-16.8 to +13.0	0.689
K. pneumoniae	Ciprofloxacin	-1.5	-14.8 to +13.9	0.835
K. pneumoniae	Meropenem	+5.6	-13.8 to +29.4	0.597

Данные по УПП - Астана (2019-2024)

==	= Astana: AAPC (long-te	rm) ===					
	Bacteria	Antibiotic	Period	AAPC (%)	CI 95%	\	p-value
0	Escherichia coli	Ceftriaxone	2020-2024	+5.7	-1.3 to +13.3	0	0.113
1	Escherichia coli	Cefotaxime	2019-2024	-22.6	-28.6 to -16.2	1	< 0.001
2	Escherichia coli	Ciprofloxacin	2019-2024	+10.7	+2.7 to +19.4	2	0.008
3	Escherichia coli	Meropenem	2019-2024	-60.0	-75.9 to -33.6	3	< 0.001
4	Klebsiella pneumoniae	Ceftriaxone	2020-2024	+7.9	-8.7 to +27.5	4	0.370
5	Klebsiella pneumoniae	Cefotaxime	2019-2024	-26.1	-40.0 to -9.0	5	0.004
6	Klebsiella pneumoniae	Ciprofloxacin	2019-2024	+56.0	+21.4 to +100.5	6	< 0.001
7	Klebsiella pneumoniae	Meropenem	2019-2024	-2.1	-40.0 to +59.7	7	0.932

Thank you!

References

- 1. Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis. *The Lancet* 2022, 399, 629–655, doi:10.1016/S0140-6736(21)02724-0.
- 2. Mestrovic, T.; Robles Aguilar, G.; Swetschinski, L.R.; Ikuta, K.S.; Gray, A.P.; Davis Weaver, N.; Han, C.; Wool, E.E.; Gershberg Hayoon, A.; Hay, S.I.; et al. The Burden of Bacterial Antimicrobial Resistance in the WHO European Region in 2019: A Cross-Country Systematic Analysis. *The Lancet Public Health* 2022, 7, e897–e913, doi:10.1016/S2468-2667(22)00225-0.
- 3. O'Neill, J. Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations; 2014;
- 4. GBD 2021 Antimicrobial Resistance Collaborators Global Burden of Bacterial Antimicrobial Resistance 1990-2021: A Systematic Analysis with Forecasts to 2050. *Lancet* 2024, 404, 1199–1226, doi:10.1016/S0140-6736(24)01867-1.
- 5. WHO Global Action Plan on Antimicrobial Resistance 2016.
- 6. WHO Roadmap on Antimicrobial Resistance for the WHO European Region 2023–2030 2023.
- 7. Sujith, S.; Solomon, A.P.; Rayappan, J.B.B. Comprehensive Insights into UTIs: From Pathophysiology to Precision Diagnosis and Management. *Front. Cell. Infect. Microbiol.* 2024, 14, 1402941, doi:10.3389/fcimb.2024.1402941.
- 8. Mareș, C.; Petca, R.-C.; Popescu, R.-I.; Petca, A.; Mulțescu, R.; Bulai, C.A.; Ene, C.V.; Geavlete, P.A.; Geavlete, B.F.; Jinga, V. Update on Urinary Tract Infection Antibiotic Resistance-A Retrospective Study in Females in Conjunction with Clinical Data. *Life (Basel)* 2024, *14*, 106, doi:10.3390/life14010106.
- 9. Zhazykhbayeva, D.; Bayesheva, D.; Kosherova, Z.; Semenova, Y. Antimicrobial Resistance Surveillance in Post-Soviet Countries: A Systematic Review. *Antibiotics* 2024, 13, 1129, doi:10.3390/antibiotics13121129.
- 10. Linde-Ozola, Z. The Soviet, the European, The Latvian: Implementing Global Patient Safety Standards in Post-Soviet Latvia. *Anthropology of East Europe Review* 2016, 34, 38–53.
- 11. Gotsadze, G.; Chikovani, I.; Goguadze, K.; Balabanova, D.; McKee, M. Reforming Sanitary-Epidemiological Service in Central and Eastern Europe and the Former Soviet Union: An Exploratory Study. *BMC Public Health* 2010, 10, 440, doi:10.1186/1471-2458-10-440.
- 12. Zwetyenga, J.S.L.G.Z.; Kalmambetova, G.; Saparova, G.; Ormokoeva, K.; Kasymbekova, K.; Davlatov, F.; Volkova, T.; Salibaeva, Z.; Safarov, A.; Brown, C.S. CASE STUDY Laboratory Core Capacities to Be Improved in Two Countries of Central Asia through Addressing National Sample Referral Mechanisms. *Public health panorama* 2018, 4, 23–29.