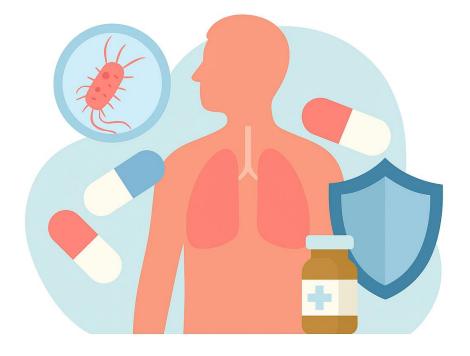
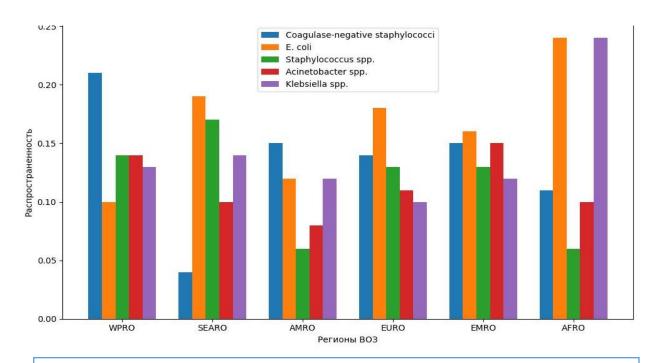
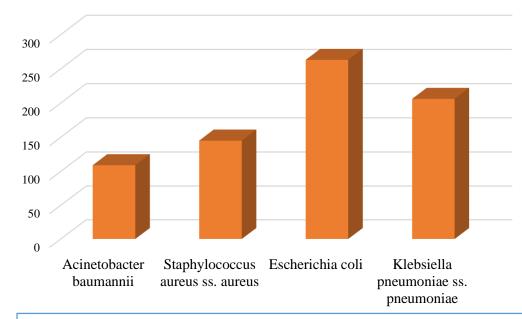


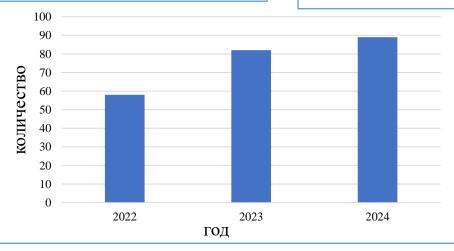
Научно-исследовательская лаборатория Карагандинского медицинского университета


«Возможности математического моделирования для преодоления антимикробной резистентности»


Тимошенко А.М. младший научный сотрудник, магистр.


Антибиотикорезистентность остаётся одной из наиболее серьёзных угроз глобальному здравоохранению, потенциально приводя к 10 миллионам смертей ежегодно к 2050 году, согласно прогнозам Всемирной организации здравоохранения.

В Казахстане проблема антибиотикорезистентности остаётся актуальной, несмотря на мероприятия по ограничению неконтролируемого использования антимикробных препаратов. Неполное соблюдение протоколов лечения, еще встречающаяся доступность антибиотиков без рецепта и недостаточная осведомлённость о правильном их применении способствуют распространению резистентных штаммов, что требует разработки новых подходов к прогнозированию и контролю антибиотикорезистентности.



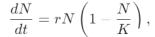
Распространенность микроорганизмов по регионам мира

Распространенность микроорганизмов клиники НАО КМУ за 2022-2024 годы

Рост количества случаев выявления штаммов *Escherichia coli* в клинике НАО КМУ с 2022 по 2024 год

Субингибирующие концентрации (СИК) антимикробных препаратов — дозы ниже минимальной ингибирующей концентрации (МИК) — играют ключевую роль в ускорении ГПГ, стимулируя экспрессию генов, связанных с вирулентностью, биоплёнкообразованием и устойчивостью.

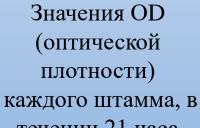
Шейкер-термостат


Штаммы Escherichia

coli

ИХА анализатор TECAN freedom evolyzer 200

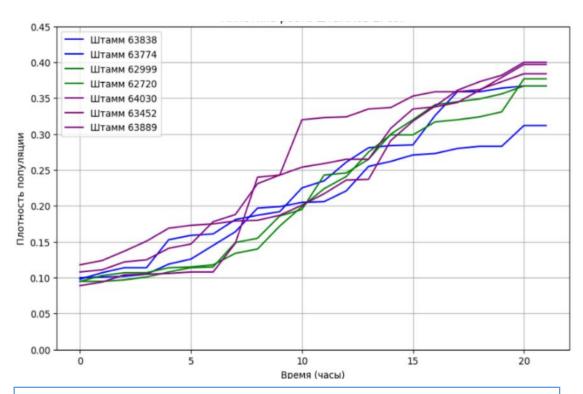
Построение моделей роста штаммов *E.coli*, Валидация моделей.



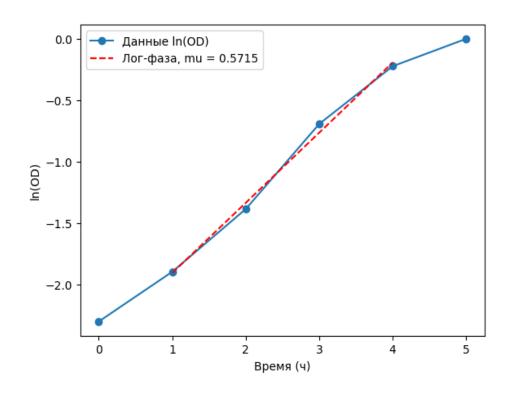
I = np.array([0, 0.5, 1, 2, 4, 8]) # Концентрации антибиотика

OD = np.array([1.0, 0.8, 0.5, 0.2, 0.1, 0.05]) # OD при этих концентрациях

 $\mu = aC^3 + bC^2 + cC + d$



течении 21 часа измерений


25922стн	63838	63774	64030	62720	63889	62999	63452	контр -	контр+
0,117	0,111	0,101	0,108	0,116	0,122	0,094	0,113	0,082	0,116
0,132	0,110	0,109	0,105	0,119	0,119	0,113	0,117	0,086	0,127
0,136	0,135	0,109	0,118	0,135	0,136	0,105	0,123	0,082	0,132
0,143	0,123	0,124	0,113	0,131	0,133	0,125	0,131	0,085	0,140
0,150	0,146	0,135	0,084	0,099	0,166	0,116	0,134	0,081	0,168
0,164	0,135	0,147	0,091	0,100	0,158	0,128	0,141	0,086	0,174
0,159	0,141	0,164	0,069	0,094	0,175	0,102	0,141	0,081	0,192
0,169	0,129	0,183	0,087	0,096	0,176	0,106	0,142	0,085	0,187

Логистическая модель роста штаммов Escherichia coli

Кинетика роста штаммов *Escherichia coli* без воздействия антибиотика

Определение удельной скорости роста µ

Штамм Escherichia coli 64030 (устойчивый)

Параметры модели Хилла (полная подгонка):

 μ max = 0.1549 4^-1

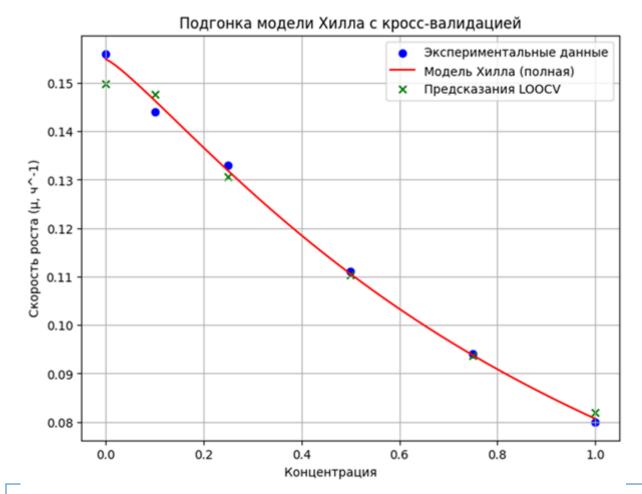
 $IC_{50} = 1.0724$

n = 1.1984

Качество полной подгонки:

 $R^2 = 0.9980$

RMSE = 0.0012


MAPE = 0.78%

Качество кросс-валидации (LOOCV):

 R^2 _cv = 0.9862

 $RMSE_cv = 0.0032$

 $MAPE_cv = 1.93\%$

Подгонка фармакодинамической модели Хилла с кросс-валидацией штамма 64030

Штамм Escherichia coli 62999 (промежуточно-устойчивый)

Параметры модели Хилла (полная подгонка):

 μ _max = 0.2036 4^-1

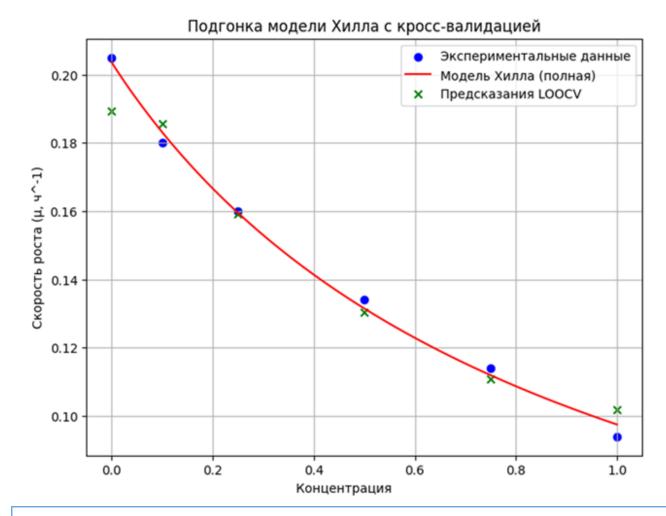
 $IC_{50} = 0.9182$

n = 0.9886

Качество полной подгонки:

 $R^2 = 0.9960$

RMSE = 0.0024


MAPE = 1.69%

Качество кросс-валидации (LOOCV):

 R^2 _cv = 0.9584

 $RMSE_cv = 0.0078$

 $MAPE_cv = 4.19\%$

Подгонка фармакодинамической модели Хилла с кросс-валидацией штамма 62999

Штамм Escherichia coli 63774 (чувствительный)

Параметры модели Хилла (полная подгонка): μ_max =

0.1500 4^-1

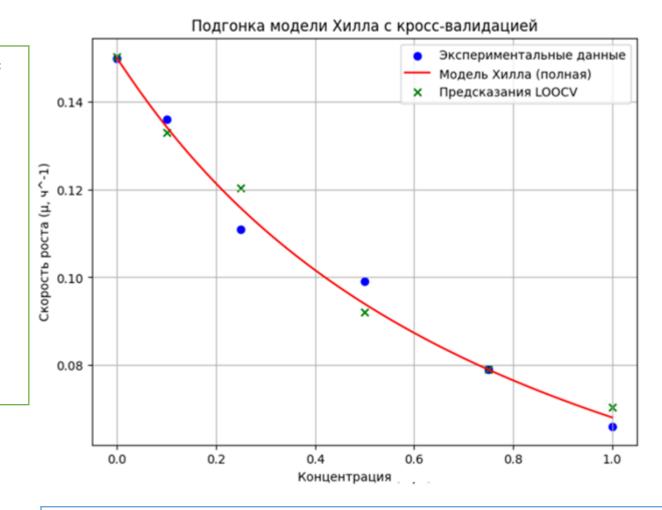
 $IC_{50} = 0.8317$

n = 1.0146

Качество полной подгонки:

 $R^2 = 0.9894$

RMSE = 0.0030


MAPE = 2.30%

Качество кросс-валидации (LOOCV):

 R^2 _cv = 0.9683

 $RMSE_cv = 0.0053$

 $MAPE_cv = 4.12\%$

Подгонка фармакодинамической модели Хилла с кросс-валидацией штамма 63774

Штамм Escherichia coli 63889 (устойчивый)

Параметры модели Хилла (полная подгонка):

 μ _max = 0.1783 4^-1

 $IC_{50} = 1.5753$

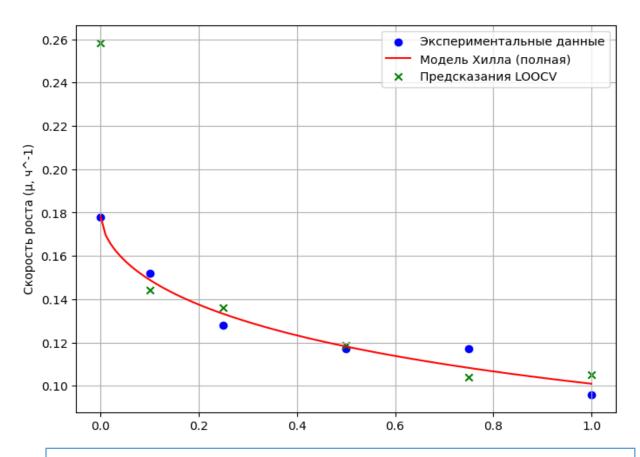
n = 0.5896

Качество полной подгонки:

 $R^2 = 0.9676$

RMSE = 0.0048

MAPE = 3,32%


Качество кросс-валидации (LOOCV):

 R^2 _cv = -0.6007

 $RMSE_cv = 0.0338$

MAPE cv = 13.10%

$$\mu(I) = \mu_{max} rac{I^n}{IC_{50}^n + I^n}$$

Подгонка фармакодинамической модели Хилла с кроссвалидацией штамма 63889

Полиноминальная модель

Штамм Escherichia coli 63889 (устойчивый)

$$\mu = aI^3 + bI^2 + cI + d$$
 (3)

где:

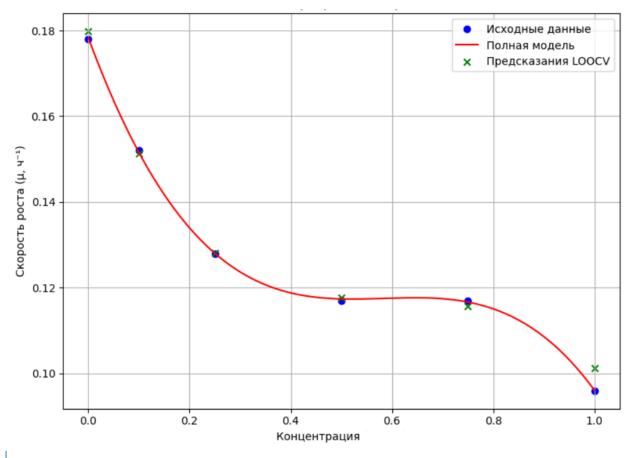
I - концентрация антибиотика,

 μ - скорость роста (ч⁻¹),

Коэффициенты модели:

d - свободный член,

с - линейный член,


b - квадратичный член,

а - кубический член.

Качество кросс-валидации (LOOCV) полиноминальной модели:

R² cv: 0.9923

RMSE_cv: 0.0023 MAPE_cv: 1.46%

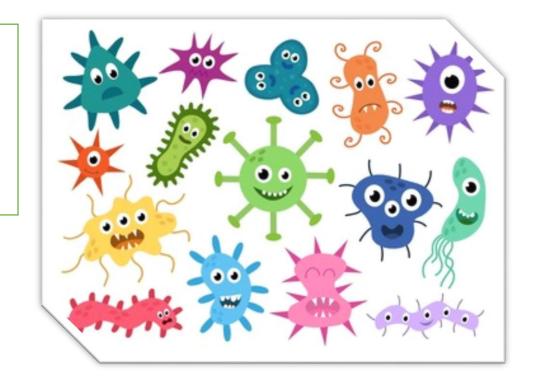
Подгонка полиноминальной модели с кросс-валидацией штамма 63889

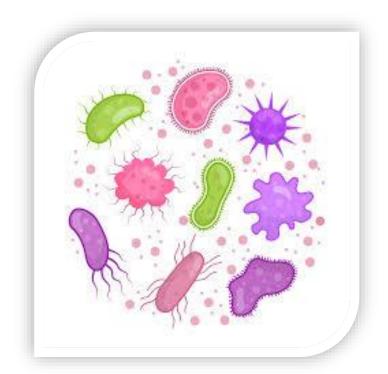
Прогнозирование на основе созданных фармакодинамических моделей

Результат прогноза фармакодинамической модели Хилла

Прогноз Штамм $\mu(I) = \mu_{max} \frac{I^n}{IC_{50}^n + I^n}$ Устойчивый штамм При I = 0.3 МИК 64030 $rac{ ext{IC50}^n}{ ext{IC50}^n + I^n} pprox \quad rac{0.123}{0.155} pprox 0.7935$ $\mu(I) = 0.155 \cdot 0.794 pprox 0.123$ ч $^{ ext{--}1}$ При I = 0.6 МИК $rac{ ext{IC50}^n}{ ext{IC50}^n + I^n} = rac{0.103}{0.155} pprox 0.664516$ $\mu(I) = 0.155 \cdot 0.6645 \approx 0.103$

Результаты прогноза фармакодинамической полиноминальной модели


Штамм	Прогноз					
	$\mu = aI^3 + bI^2 + cI + d$					
Устойчивый	При I = 0.3 МИК					
штамм 63838	$\mu = -0.003186 + 0.00495 - 0.0228 + 0.178 = 0.124$ ਪ੍ਰ $^{-1}$					
	При I = 0.6 МИК					
	$\mu = -0.025488 + 0.0198 - 0.0456 + 0.178 = 0.118$ ч					


Полученные результаты валидации подтверждают применимость моделей Хилла для прогнозирования поведения бактериальных популяций и оптимизации антимикробной терапии.

Применение полиномиальной модели третьей степени позволило более точно описать зависимость удельной скорости роста. Модель продемонстрировала высокую предсказательную и обобщающую способность, значительно превосходя модель Хилла по точности описания экспериментальных данных, что подтверждает её пригодность для прогнозирования кинетики роста и количественной оценки антимикробной активности при варьировании дозировок антибиотика. Однако для увеличения точности моделей необходимо использовать большее количество точек.

Математические модели позволяют количественно описывать рост микробов и прогнозировать развитие антибиотикорезистентности. Они помогают оптимизировать стратегии применения антибиотиков и контролировать микробное сообщество.

Интеграция моделей с экспериментальными данными и современными инструментами анализа делает их эффективным инструментом исследований и практических решений.

Спасибо за внимание

